Home > Seminars > Temiloluwa Prioleau - Data Science for Health – Biobehavioral Sensing

Temiloluwa Prioleau - Data Science for Health – Biobehavioral Sensing

Start:

2/8/2018 at 3:30PM

End:

2/8/2018 at 4:30PM

Location:

126 DeBartolo

Host:

College of Engineering close button
headerbottom

Aaron Striegel

Aaron  Striegel

VIEW FULL PROFILE Email: striegel@nd.edu
Phone: 574-631-6896
Website: http://sites.nd.edu/aaron-striegel
Office: 384C Fitzpatrick

Affiliations

Department of Computer Science and Engineering Associate Professor and Associate Department Chair
Wireless Institute Executive Committee
College of Engineering Associate Professor
Computer Networking Computer Security Human Computer Interfacing
Click for more information about Aaron
574-631-6896
Add to calendar:
iCal vCal

Diabetes is a societal grand challenge that affects 1 in 11 Americans. This condition only causes more deaths than AIDS and breast cancer combined. Due to the chronic nature of diabetes, consistent ‘patient-centered’ care is paramount for optimum management. Decades of research support that behavior impacts biology especially in management of diabetes as well as other chronic conditions. However, the ability to understand and quantify biobehavioral factors in daily living is limited. The complexity of this grand challenge calls for interdisciplinary expertise to develop actionable and clinically-relevant solutions while maintaining high usability. The overarching goal of my research program is to study novel technology-driven solutions that can support and augment clinical practice in disease care and management. In this talk, I will present the role of ubiquitous sensors and associated machine learning algorithms to understand biology-behavior connections and inform personalized healthcare. I will highlight methods that approach this complex problem by monitoring behavior, with an emphasis on sensor-based dietary monitoring, as well as methods that approach this problem from sensorbased biology monitoring. More specifically, I will present data-driven inference from wearable sensors for dietary monitoring in varying free-living environments. Additionally, I will present data-driven inference for improved self-management of diabetes from devices such as continuous glucose monitors and insulin pumps. Biobehavioral understanding in freeliving conditions remains an open problem in its infancy, and thus my research mission is to develop foundational tools to improve the standard of care in chronic diseases like diabetes.

Seminar Speaker:

Temiloluwa Prioleau

Temiloluwa Prioleau

Rice University

Temiloluwa Prioleau (www.t-prioleau.com) is an Rice University Academy Postdoctoral Fellow. She received her M.S. and Ph.D. in Electrical Engineering from Georgia Institute of Technology. Prior to that, she received her B.S. also in Electrical Engineering from the University of Texas at Austin. Dr. Prioleau’s research is driven by the many complex problems in healthcare that can benefit from engineering and technology-driven solutions. Her research interest lies at the intersection of ubiquitous sensors (mobile and wearable), data analytics, and human health. More specifically, she studies novel sensor-based methods to understand and quantify behavioral biomarkers and inform personalized healthcare in management of chronic conditions such as obesity and diabetes. Dr. Prioleau has been a recipient of the ARCS Foundation Fellowship (2012 - 2016), NSF Graduate Research Fellowship (2013 - 2016), and best paper award at the IEEE Engineering in Medicine and Biology Conference (2014).